
Progress - Core ONCOCIN Research 5 P41 RR0078516

IIIA.2.3. Core ONCOCIN Research
ONCOCIN is a data management and therapy advising program for complex
cancer chemotherapy experiments. The development of the system began in
1979, following the successful generalization of MYCIN into the EMYCIN
expert system shell. The ONCOCIN project has evolved over the last eight
years: the original version of ONCOCIN ran on the time-shared DECSystem-
20 computers using a standard terminal for the time-oriented display of
patient data. The current version uses compact workstations running on the
Ethernet network with a large bit-mapped displays for presentation of
patient data. The project has also expanded in scope. There are three major
research components: 1) ONCOCIN, the therapy planning program and its
graphical interface; 2) OPAL, a graphical knowledge entry system for
ONCOCIN; and 3) ONYX, a strategic planning program designed to give
advice in complex therapy situations. Each of these research components has
been split into two parts: continued development of the cancer therapy
versions of the system, and generalization of each of the components for use
in other areas of medicine. This portion of the annual report will concentrate
on the generalization tasks related to treatment planning, knowledge
acquisition, and research to extend ONCOCIN for application in clinical trial
domains other than medical oncology (E-ONCOCIN).
In addition, we will discuss the continued development of a generalized
knowledge acquisition toolcde+ned to encode descriptions of clinical trials.
The system, named PROTEGE, was the Ph.D. thesis work of Mark Musen,
(who joined our faculty this year). The output of PROTEGE is an OPAL-like
input system designed for a target clinical area such as hypertension. This
input system @UN-OPAL) can then be used to create the hypertension
knowledge base for an E-ONCOCIN like system. This experiment was
carried out this year for both the hypertension and oncology domains.
Details of this project are described later in this report.

(1) Overview of the ONCOCIN Therapy Pkn.ni.ng System
ONCOCIN is an advanced expert system for clinical oncology. It is designed
for use after a diagnosis has been reached, focusing instead on assisting with
the management of cancer patients who are receiving chemotherapy.
Because anticancer agents tend to be highly toxic, and because their tumor-
killing effects are routinely accompanied by damage to normal cells, the rules
for monitoring and adjusting treatment in response to a given patient’s
course over time tend to be complex and dif?icult to memorize. ONCOCIN
integrates a temporal record of a patient’s ongoing treatment with an
underlying knowledge base of treatment protocols and rules for adjusting
dosage, delaying treatment, aborting cycles, ordering special tests, and
similar management details. The program uses such knowledge to help
physicians with decisions regarding the management of specific patients.
A major lesson of past work in clinical computing has been the need to
develop methods for integrating a system smoothly into the patient-care

E. H. Shortliffe 26

5 P41 RR00785-16 Progress - Core ONCOCIN Research

environment foi- which it is intended. In the case of ONCOCIN, the goal has
been to provide expert consultative advice as a by-product of the patient data
management process, thereby avoiding the need for physicians to go out of
their way to obtain advice. It is intended that oncologists use ONCOCIN
routinely for recording and reviewing patient data on the computer’s screen,
regardless of whether they feel they need decision-making assistance. This
process replaces the conventional recording of data on a paper flowsheet and
thus seeks to avoid being perceived as an additive task. In accordance with
its knowledge of the patient’s chemotherapy protocol, ONCOCIN then
provides assistance by suggesting appropriate therapy at the time that the
day’s treatment is to be recorded on the flowsheet. Physicians maintain
control of the decision, however, and can override the computer’s
recommendation if they wish. ONCOCIN also indicates the appropriate
interval until the patient’s next treatment and reminds the physician of
radiologic and laboratory studies required by the treatment protocol.

(2) Implementation of the ONCOCIN Workstation in the Stanford
clinic
In mid-1986, we placed the workstation version of ONCOCIN into the
Oncology Day Care clinic. This version is a completely different program
from the version of ONCOCIN that was available in the clinic from 1981-1985
- using protocols entered through the OPAL program, with a new graphical
data entry interface, and revised knowledge representation and reasoning
component. One person in the clinic (Andy Zelenetz) became primarily
responsible for making sure that our design goals for this version of
ONCOCIN were met. His suggestions included the addition of key protocols
and the ability to have the program be useful for clinicians as a data
management too1 if the complete treatment protocol had not yet been entered
into the system. Additional fellows were trained on a very stable release of
ONCOCIN that became available in early 1988. A version of the system was
sent to the University of Pittsburgh for evaluation and to the National
Library of Medicine Artificial Intelligence Demonstration Center. For these
various efforts, Janice Rohn has created an extensive user manual, sample
patient interactions, and reminder cards to shorten the training period for
ONCOCIN.
The process of entering a large number of treatment protocols in a short
period of time led to other research topics including: design of an automated
system for producing meaningful test cases for each knowledge, modification
of the design of the time-oriented data base and the methods for accessing the
data base, and the development of methods for graphically viewijng multiple
protocols that are combined into one large knowledge base. These research
efforts will continue into the next year. In addition, some of the treatment
regimens developed for the original mainframe version are still in use and
can be transferred to the new version of ONCOCIN.
We also received new insights about the design of the internal structures of
the knowledge base (e.g., the relationship between the way we refer to

27 E. H. Shortliffe

Progress - Core ONCOCIN Research 5P41RROO785-16

chemotherapies, drugs, and treatment visits). We will continue to optimize
the question-asking procedure, the method for traversing the plan structure
in the knowledge base, and consider alternative arrangements used to
represent the structure of chemotherapy plans. Although we have
concentrated our review of the ONCOCIN design primarily on the data
provided by additional protocols, we know that non-cancer therapy planning
problems raise similar issues. The E-ONCOCIN effort is designed to produce
a domain-independent therapy planning system that includes the lessons
learned from our oncology research.

(3) E-ONCOCIN: D omain Independent Therapy Planning
During the past two years, our E-ONCOCIN research has concentrated on
understanding how protocols in medicine vary across subspecialties. We are
examining several application areas: the intensive care unit, insulin
treatment for diabetes, hypertension protocols, and both standard and
complex cancer treatment problems. The diagnosis and therapy selection for
patients in the intensive care unit is a natural application area because it is
based on changing data and the need to determine the response to therapy
interventions. In addition, it is an area where reasonable mathematical
models of the respiratory system can be integrated into the expert system
(see description of the VentPlan system). We also felt that the area of insulin
treatment for diabetes would be a good area to explore. Like cancer
chemotherapy, the treatments for diabetes continues over a long period of
time and has been the area of intensive protocol development. Unlike cancer
chemotherapy, the treatment plan must handle multiple treatments in one
day and deemphasises the use of multiple drugs (although there are a variety
of types of insulin). During 1987, using the medical literature and several
internists in the medical computer science research group (Mark Frisse,
Mark Musen, and Michael Kahn), we performed knowledge acquisition
experiments for insulin treatment of diabetes. The proposed structure for the
knowledge base was implemented using the object-oriented programming
language upon which ONCOCIN has been based. These experiments, like
those of adding more protocols to ONCOCIN, demonstrated the need for
changes in the way that the knowledge base can access the time-oriented
data base that records patient data and previous conclusions. The
relationships between the different doses and types of insulin treatments will
also require alternative ways of building treatment hierarchies. Thus, our
initial experiments have shown that many of the elements of the ONCOCIN
design are sufficiently general for other application areas, but that some
specific elements (particularly the representation of temporal events) will
have to be generalized. A description of our revised temporal representations
has appeared in a thesis by Michael Kahn, who is at Washington University
in St. Louis, based on work completed at Stanford and U.C.S.F.
A logical extension of Kahn’s work has been an investigation of how to modify
the EONCOCIN framework so that it can work with established data base
tools instead of the hand-tailored data base currently in use. In making this

E. H. Shortliffe 28

5P41RR00785-16 Progress - Core ONCOCIN Research

transformation, we need to maintain the access.to data that is mediated by
the temporal network, although most relational data bases are not organized
for encoding temporal information. In this work, we must be able to describe
the changing clinical context and event intervals that show up in many
diverse application areas. An example of a new area that we are exploring is
the treatment of AIDS patients on clinical protocols. While this area is
similar to some aspects of oncology protocols, we are faced with significant
differences in the way that treatment is delivered. AIDS patients do not
always follow the type of strict temporal schedules (e.g., regular visits to
outpatient clinics) seen with oncology patients. They have a chronic disease
with acute exacerbations of opportunistic infections. Medications are often
given orally as opposed to the controlled intravenous infusions of medical
oncology patients. Furthermore, the medication schedule is interrupted by
frequent hospitalizations and confounded by taking drugs not on the protocol.
Together, these factors will require a much more flexible model of the
temporal dimension of treatment planning.

(4) OPAL: Graphical Knowledge Acquisition Interface
OPAL is a graphical environment for use by an oncologist who wishes to
enter a new chemotherapy protocol for use by ONCOCIN or to edit an
existing protocol. Although the system is designed for use by oncologists who
have been trained in its use, it does not require an understanding of the
internal representations or reasoning strategies used by ONCOCIN. The
system may be used in two interactive modes, depending on the type of
knowledge to be entered. The first permits the entry of a graphical
description of the overall flow of the therapy process. The oncologist
manipulates boxes on the screen that stand for various steps in the protocol.
The resulting diagram is then translated by OPAL into computer code for use
by ONCOCIN. Thus, by drawing a flow chart that describes the protocol
schematically, the physician is effectively progr amming the computer to carry
out the procedure appropriately when ONCOCIN is later used to guide the
management of a patient enrolled in that protocol.
OPAL’s second interactive mode permits the oncologist to describe the details
of the individual events specified in the graphical description. For example,
the rules for administering a given chemotherapy will vary greatly depending
upon the patient’s response to earlier doses, intercurrent illnesses and
toxicities, hematologic status, etc. For example, one form permits the entry of
an attenuation schedule for an agent based upon the patient’s white count
and platelet count at the time of treatment. Tables such as this are generally
found in the written version of chemotherapy protocols. Thus OPAL permits
oncologists to enter information using familiar forms displayed on the
computer’s screen. The contents of such forms are subsequently translated
into rules and other knowledge structures for use by ONCOCIN.

29 E. H. Shortliffe

Progress - Core ONCOCIN Research 5 P41 RROO785-16

Status of the OPAL System
The OPAL is one of the few graphical knowledge acquisition systems ever
designed for expert systems. Even fewer are designed to be used as the main
method for entering knowledge as opposed to a proof of concept
implementation. We have pursued three directions in the development of the
OPAL system, also in response to the large number of protocols entered
through this system during the several years.. The first direction is the
modification of graphical forms needed to allow the entry of facts that did not
show up in the protocols used to test the initial version of OPAL. OPAL
continues to assume that most of the knowledge to be entered will have very
stereotyped forms, e.g., dose attenuations for most treatment toxicities are
based on a comparison of only one laboratory measurement at a time, such as
using the BUN to adjust for renal toxicity. We sometimes need much more
complex ways of stating the scenarios in which dose adjustments may be
necessary. This need has led us in a second direction, towards a “lower-level”
rule entry approaching the syntax of the reasoning component of ONCOCIN,
but using graphical input devices where applicable. A major accomplishment
of this last year was to experimentally combine the OPAL and ONCOCIN
programs into one working program, and to completely enter knowledge from
OPAL using both the high level tools and lower level rule editors, but without
needing to make changes at the ONCOCIN side of the system. The OPAL
program maps the information provided on the graphical forms into a
complex data structure (called the IDS) that represents the required
knowledge to specify the contents of a protocol. This data structure is used
for copying information from one protocol to another, and as the basis for the
creation of the ONCOCIN knowledge base. Our experiments with OPAL, and
our intention to generalize OPAL use outside of oncology protocols, suggests
that we reorganize the OPAL program to use a relational data base to store
its knowledge. We have patterned the data base after an existing data base
query syntax. Because no data bases exist for the Inter-Lisp language upon
which OPAL is based, we reimplemented the data base from its written
description. We continue to explore the appropriate avenue for the
connection of our knowledge acquisition systems to data bases, and have
concentrated on the SQL query language to a relational data base using the
client-server model (e.g., the physical data base may exist on a different
machine than the knowledge acquisition tool - transmitting the query and
the response over the network).
With the future of dedicated lisp processors looking very unclear, we began to
explore alternative platforms for developing the interface for OPAL-like
systems. We have begun experiments using HyperCard on the Mac II and
Interface Builder on the NeXT machine. In order to build experience with the
each of these possible platforms, we have re-implemented portions of OPAL
system, and are analyzing the results. It is particularly hard to determine
the best platform since the NeXT machine software is still in a rudimentary

E. H. Shortliffe 30

5 P41 RR00785-16 Progress - Core ONCOCIN Research

stage, and HyperCard on the Mac II has significant limitations including
small “card size” and the inability to display multiple cards simultaneously.

(5) Generalized Knowledge Acquisition through PROTl%Gk
Mark Musen designed and implemented the first version of,the PROTQGl?
knowledge-acquisition-system development tool. PROTEGE is used to collect
information which describes the concepts (both entities and their
relationships) in an application area for which a skeletal-planning type of
expert system would be useful, concentrating on clinical trials. The system
acquires the “ontology” of a domain through a series of fill-in-the-blank forms
and a “flowchart-entry” tool. These concepts are then mapped onto a set of
generic forms, which, in turn, create a knowledge acquisition tool for the
application area.
PROTl?G& makes use of the forms management system built for the original
OPAL, and a newly developed relational data base management syste,m
written for the Xerox InterLisp-D workstations. The output of PROTEGE is
an OPAL-like set of forms tailored to the special structures of the application
area. To test these ideas, we first reimplemented portions of the OPAL
interface from a high level description of oncology. After the translation
process to the ONCOCIN reasoning program, a consultation was run that
matched the manually built system. This experiment was then repeated for
the area of hypertension protocols for which ONCOCIN had never been
specifically designed. With some minor generalizations to the ONCOCIN
reasoner and interviewer, we were able to run a hypertension consultation.
With Mark returning as a faculty member, this work has continued this year,
but faces the same platfoim and basic tool issues as described above.
Portions of the PROTEGE interface is being reimplemented using the
Interface Builder on the NeXT computer.

(6) Speech Input to Expert Systems

(6.1) Prototvne Sneech Hardware/Software Svstem
In 1987 we began a project to explore the integration of speech-recognition
technology into the interface to ONCOCIN running on the XEROX Lisp
workstations. The project uses a commercially available continuous-speech-
recognition product loaned by the vendor, Speech Systems, Inc. (SSI) of
Tarzana, California. The speech recognizer consists of a custom processor,
called the Phonetic Engine@ and a suite of software modules called the
Phonetic DecoderTM. The Phonetic DecoderTM initially ran on a SUN 3/75 and
now runs on the NeXT computer.
The development of this project requires significant experience in distributed
computing since the phonetic device, initial parsing software, and the
ONCOCIN system all reside on different pieces of hardware. One of the early
steps is to allow the Lisp machine to remotely control the parsing software on
the SUN. We built an interpreter for communicating between the speech
software library running on the SUN and the Xerox Lisp machine. This

31 E. H. Shortliffe

Progress - Core ONCOCIN Research 5P41RROO785-16

interpreter reads Lisp-style function calls corresponding to the speech library
routines and returns Lisp-style results as remote procedure call (RPC)
mechanism. We then wrote the library of corresponding Lisp stub routines
and a function to connect to the SUN workstation and start the server. In
normal operation, we call the C-based speech library routines from Lisp as if
they were Lisp functions. During this year, we were able to port a version of
the SSI system to the NeXT machine. In addition, we mounted a new version
of the speech hardware (PE200) such that we can compare the two versions of
the hardware with each other in terms of accuracy, speed, end ease of use. In
addition, we were able to obtain a copy of the CMU speech understanding
system (running on the NeXT machine), and were able to make some
comparisons with the SSI speech processing hardware. All of these systems
require extremely fast processors in order to deliver reasonable response
time. The announcement of relatively inexpensive and fast RISC-based
architectures should enhance the acceptance of speech input systems.
Because some of the applications of the speech equipment do not require
continuous speech, we are also evaluating this mode.
We created a prototype system that permits users to navigate the graphical
interface and enter clinical data using speech. The system uses the location
of the cursor on the screen to provide a context for choosing candidate
grammars with which to attempt recognition of a user’s utterance. The
system dynamically re-orders the list of candidate recognition grammars
based on the dialog history. Albeit with limitations on the legal grammars, it
is now possible to carry on most of the ONCOCIN data acquisition steps
using speech alone or speech plus pointing with the mouse. In addition, some
elements such as the neural toxicities can be entered as textual descriptions
and automatically encoded as one the l-4 point scale used on flowsheet forms.
This system was extended such that it was possible to have an entire
ONCOCIN consultation only with voice commands.
In order to translate an utterance back into an action that can occur in the
ONCOCIN interface, we need the ability to reparse the text string returned
by the SSI equipment. The SSI equipment uses (potentially complex) syntax,
built up of various classifications, to understand sentences but returns just
the ASCII component of the actual sentence; you can not get it in terms of the
original classifications in the syntax (which are generally semantically
significant). W’hen the ASCII string is returned, a description of the syntax is
used to convert the string into a parse tree that relates directly to the
grammar definition. We can now process the returned information at a much
higher level than was possible with the simple ASCII text. In addition, we
have built tools to perform the semantic analysis that is converted to specific
actions in the interface language. For example, the utterance “white blood
count is 3.2” is parsed using a grammar “<parameter> is <value>.” When
the string is recognized, it must be turned back into the action sequence - in
this case, opening the hematology form if it is not already open, and
highlighting the WBC row, and placing the value 3.2 in the column
corresponding to the current visit. While the graphical effects appear simple,

E. H. Shortliffe 32

5 P41 RROO785-16 Progress - Core ONCOCIN Research

these internal transformations may be quite complex. We are deriving from
this experience a description of an interface manipulation language that
details the “legal operations” in an ONCOCIN-like graphical interface.
We have also explored a second medical record-keeping task - the creation of
portions of a progress note that describes in textual form the changes in the
patients status from week to week. We have developed a system that uses
broad categories of data as specified on the spreadsheet as a prompt for
textual input. For example, the spreadsheet includes a line for
“gastrointestinal toxicity” of grades 1 to 4. This becomes the topic of a
sentence to be included in the progress report such as “The patient has
experienced nausea and vomiting one to three times per day over the last
week.” The number of sentences that are possible cannot practically be
displayed on the screen, so we are experimenting with various types of
prompting to give the user a sense of what sentences the system will be able
to recognize; e.g., by selecting random examples from the grammars to
present as hints for entry or by presenting a graphical version of the legal
syntax at any point. This system was further extended to develop a portion of
the physical examination (PE) portion of the progress note. The PE consists
of a short description about each organ system in the body, concentrating on
those specific aspects that are remarkable during a patient visit (changes or
significant findings). Using hypertext techniques similar to those found in
outlining programs such as MORE, we created a hierarchical description of
the breast portion of the PE, and have been able to create reasonable
interactions for this one segment of the PE. As the user becomes more
familiar with the structure of the legal syntax and the descriptions necessary
to reach a particular level of detail, then they can use speech to bypass the
graphical interface and directly enter the utterance. We are exploring ways
to scale these techniques up to allow for entry of the entire PE, while
examining how to organize the less structured elements of the progress note.

j6.2) Soeech Exoerimentg
We are performing experiments to (1) enhance the system’s grammars with a
wider range of phrases clinicians actually use when talking to a computer
and (2) gain insights into clinicians’ models of spoken interaction with advice
systems so that we may ground our interface design in observed practice. In
order to assess how physicians would speak to a computer in an ideal
situation without constraints or prior assumptions, we are conducting a
series of experiments which simulate continuous-speech understanding by
computers. The setting of these experiments includes a hidden computer
operator simulating the output of ONCOCIN if it had the ability to
understand the spoken input, as well as a video camera to record both audio
and visual clues. Typed responses from the operator are translated back as
actions on the computer display as well as audio responses through the use of
a speech synthesizer. It appears to the subject as if the computer is
understanding and responding to their speech. The physicians use

33 E. H. Shortliffe

Progress - Core ONCOCIN Research 5 P41 RR0078516

ONCOCIN in the same manner as it is used in the clinic when they see
patients, but with the added capability of speech input.
These experiments enable us to both build up a basic vocabulary for the
speech system as well as examine subtle linguistic issues to guide future
directions. The experiments have been completed and we are analyzing the
data in order to describe user-specific grammars, and to see how individuals
react to purposeful misunderstandings by the computer. We experimenting
we a range of possible misunderstandings (e.g., from “What did you say?” to
“The platelet count was WHAT?“). Our initial impressions of these
experiments were that each subject quickly developed her own subgrammar
for entering the information, often based on their belief about the system’s
knowledge of the domain, and that subjects responded directly to
misunderstandings with partial phrases in a manner similar to being asked
by a human. This experiment underscores the importance of being able to
obtain not only the top-rated sentence from the recognition system, but also
an indication as to which parts of the utterance were most likely to have been
misrecognized.

(7) Object Language Support for ONCOCIN Project
We released a new version of our object language at the start of this past year
which has proven to be the most stable and powerful version to date. There
have been a number of minor bug fures and several feature additions over the
course of the year but for the most part the system as required much less
attention than in previous years. The number of new systems being built on
it (like our speech work) continues to increase. Future planning for the
system consists of determining whether or not it should be converted to
Common Lisp, based on whether object systems available under Common
Lisp are sufficient for our needs, and if we do convert it what it would it look
like if properly integrated with that language.

(8) Personnel
Samson Tu has been primarily responsible for the design of E-ONCOCIN,
Michael Kahn developed the temporal representations used by the system,
Clifford Wulfman has been involved with extensions the the data entry
interface and the extensions to the interface in order to add speech input.
Samson and Cliff werg responsible for extensions to their programs to
support the PROTEGE effort. David Combs has been involved with the
knowledge,acquisition interface and provided major programming support for
the PROTEGE effort. Janice Rohn has been involved with the entry of
protocols, interaction with physicians using the system, documentation of the
system, and execution of the speech experiments. Christopher Lane has
developed the object-oriented systems software upon which the entire
ONCOCIN system is designed. He has be instrumental in developing the
systems software for the speech project, and has performed our evaluations of
different speech input devices and configurations. . Ellen Isaacs, a Ph.D.
student in Psycholinguistics has helped to design the simulated speech-input

E. H. Shortliffe 34

5 P41 RR0078516 Progress - Core ONCOCIN Research

experiments. Monica Rua has developed the progress note software in
conjunction with Cliff and Christopher.

35 E. H. Shortliffe

Progress - Core AI Research 5 P41 RR0078516

IIIA.2.2. Core AI Research

(1) Rationale
Artificial Intelligence (AI) methods are particularly appropriate for aiding in
the management and application of knowledge because they apply to
information represented symbolically, as well as numerically, and to
reasoning with judgmental rules as well as logical ones. They have been
focused on medical and biological problems for well over a decade with
considerable success. This is because, of all the computing methods known,
AI methods are the only ones that deal explicitly with symbolic information
and problem solving and with knowledge that is heuristic (experiential) as
well as factual.
Expert systems are one important class of applications of AI to complex
problems - in medicine, science, engineering, and elsewhere. An expert
system is one whose performance level rivals that of an human expert
because it has extensive domain knowledge (usually derived from an human
expert); it can reason about its knowledge to solve difficult problems in the
domain; it can explain its line of reasoning much as an human expert can;
and it is flexible enough to incorporate new knowledge without
reprogr amming. Expert Systems draw on the current stock of ideas in AI, for
example, about representing and using knowledge. They are adequate for
capturing problem-solving expertise for many bounded problem areas.
Numerous high-performance, expert systems have resulted from this work in
such diverse fields as analytical chemistry, medical diagnosis, cancer
chemotherapy management, VLSI design, machine fault diagnosis, and
molecular biology. Some of these programs rival human experts in solving
problems in particular domains and some are being adapted for commercial
use. Other projects have developed generalized software tools for
representing and utilizing knowledge (e.g., EMYCIN, UNITS, AGE, MRS,
BBl, and GLisp) as well as comprehensive publications such as the three-
volume Handbook of Artificial Intelligence1 and books summarizing lessons
learned in the DENDRAL and MYCIN research projects2.
This report documents progress on the basic or core research activities within
the Knowledge Systems Laboratory (KSL), funded in part under the SUMEX
resource as well as by other federal and industrial sources. This work
explores a broad range of basic research ideas in many application settings,

1 Barr, A., Cohen, P. R., and Feigenbaum, E. A. The Handbook ofArtificial Intelligence,
Volumes 1, II, and IX William Kaufmann, Inc., Los Altos, CA, 1981 and 1982.

2 Buchanan, B. G., and Shortliffe, E. H. Rule-Based Expert Systems: The MYCIN
Experiments of the Stanford Heuristic Programming Project. Addison-Wesley, Reading,
MA, 1984.
Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A., and Lederberg, J. Applications of
Artificial Intelligence for Organic Chemistry: The DENDRAL Project. McGraw-Hill, New
York, NY, 1980.

E. H. Shortliffe

5 P41 RR00785-16 Progress - Core AI Research

all of which contribute in the long term to improved knowledge based systems
in biomedicine.

(2) Highlights of Progress
In the last year, research has progressed on several fundamental issues of AI.
As in the past, our research methodology is experimental; we believe it is
most fruitful at this stage of AI research to raise questions, examine issues,
and test hypotheses in the context of specific problems, such as management
of patients with Hodgkin’s disease. Thus, within the KSL we build systems
that implement our ideas for answering (or shedding some light on>
fundamental questions; we experiment with those systems to determine the
strengths and limits of the ideas; we redesign and test more; we attempt to
generalize the ideas from the domain of implementation to other domains;
and we publish details of the experiments. Many of these specific problem
domains are medical or biological. In this way we believe the KSL has made
substantial contributions to core research problems of interest not just to the
AIM community but to AI in general.
Progress is reported below under each of the major topics of our work.
Citations are to KSL technical reports listed in the publications section.

(2.1) Large Multi-use Knowledpe Bases for Science and Engineering
There is considerable power in the current stock of AI techniques, as
exemplified by the rate of transfer of ideas from the research laboratory to
commercial practice. But we also believe that today’s technology needs to be
augmented to deal with the complexity of medical information processing.
One of our core research goals is to analyze the limitations of current
techniques and to investigate the nature of methods for overcoming them.
Long-term success of computer-based aids in medicine and biology depend on
improving the programming methods available for representing and using
domain knowledge. That knowledge is inherently complex: it contains
mixtures of symbolic and numeric facts and relations, many of them
uncertain; it contains knowledge at different levels of abstraction and in
seemingly inconsistent frameworks; and it links examples and exception
clauses with rules of thumb as well as with theoretical principles. Moreover,
strategies for using domain knowledge can be complex as well, particularly in
dynamic environments which require continual reassessment of the best use
of limited computational resources. Current techniques have been successful
only insofar as they severely limit this complexity. As the applications
become more far-reaching, computer programs will have to deal more
effectively with richer expressions, more voluminous amounts of knowledge
and more complex control strategies.
Expert systems are being developed that impact nearly every field of human
endeavor: medicine, manufacturing, financial services, diagnosis of
machinery, geology, molecular biology and structural design, to name a few.
Each new instance is a confirmation of the Knowledge Principle (knowledge is
power). In each system, expert level problem-solving performance is obtained

37 E. H. Shortliffe

Progress - Core AI Research 5 P41 RROO785-16

by using relatively simple and uniform reasoning methods which access an
extensive body of domain knowledge. The ability of these systems lies
primarily in the specific concepts, facts, methods, models, etc. that can be
brought to bear on the problem. A corollary to the Knowledge Principle is
that significant improvements in the power of knowledge-based systems will
be derived primarily from the ability to access large amounts of knowledge.
To test that corollary, we are embarked on a multi-year research effort that
will develop methods for building large, multi-use knowledge bases (LMKB).
We believe construction of a LMKB is an essential step toward resolving two
fundamental problems plaguing the current generation of expert systems.
The first is brittleness: current systems can exhibit only a very narrow range
of expert behavior, and their performance falls off precipitously at the limits
of their expertise. The second problem is over-specialization: a knowledge
base constructed to support of one type of expert task (e.g., diagnosis) cannot
be used to support other types of tasks (e.g., design).
Our hypothesis is that both the problems of brittleness and over-
specialization can be addressed by constructing large, multi-use knowledge
bases. A LMKB would:

1) encode domain knowledge in greater depth and breadth than required for
any specific task,

2) encode knowledge that cuts across many domains of expertise, and
3) serve as a core repository of knowledge to be accessed by large numbers of

specific applications.
Research of this scope raises many important research issues. Of primary
importance are issues of knowledge representation. The AI field needs to
broaden its understanding of how to give programs a representation of the
physical world, its phenomena, its processes, and its devices (in addition, of
course, to the conventional mathematical/numeric representations of
scientific computing). These issues are both epistemological and technological
(how the concepts are named, described, and related; and how they are stored
for efficient access and use by reasoning processes). Of these, the
epistemological issues are key, because we intend our knowledge bases to be
long-lasting, robust, and built upon by many other groups. The “large” in
large knowledge bases cannot become a reality unless there is cumulation,
and cumulation will only come about if we demonstrate the epistemological
adequacy of our pioneering efforts at representing the world of physics and
engineering. During the past year we have been exploring a variety of
representations and the systems which employ them, including CYC from
MCC, CLASS from Schlumberger, and QPE from Univ. of Illinois.
A second major issue is one we call knowledge compilation. This is the bridge
between the second-era systems and the expert systems of the first era.
Effective problem solving is not typically carried out at the level of first
principles, but rather at the level of more compact, efficient forms of
knowledge, compiled fi-om experience with specific tasks. So-called

E. H. Shortliffe 38

5 P41 RR0078516 Progress - Core AI Research

knowledge compilers are needed to translate from the more general forms of
knowledge (e.g. the basic principles of the physical science and engineering)
to highly specific forms needed for diagnosis, design, etc. During the initial
year of this project, we demonstrated the feasibility of this approach by
deriving a set of diagnostic rules and a set of redesign heuristics from a single
knowledge base containing a model of the structure and behavior of the
Reaction Wheel Assembly mentioned above. We are also developing an
integrated scheme for using “first principles” knowledge of the physical world
for simulation. Given a description of the structure of a device in terms of its
constituent objects and their relations, the system identifies applicable
physical laws, processes, types of matter, etc. and produces a set of equations
to describe the behavior of the device. The equation model is analyzed using
the method of causal ordering to produce a model that reveals the
dependency relations among the parameters of the modell.
Closely related to knowledge compilation is its inverse, knowledge
justification. That is, how can one justify the highly specialized knowledge in
a typical task-specific expert system in terms of more fundamental laws of
nature and/or principles of engineering? Our approach here is to treat both
the compilation and justification processes together. As knowledge is
compiled into a more specialized form, the system will record the links back
to the more fundamental sources of knowledge. A side benefit of knowledge
justification will be the ability to provide more satisfactory explanations of an
expert system’s line of reasoning than just a trace of the rules that were fired.
A fourth research issue is concerned with model-based reasoning, and in
particular, reasoning about physical devices using multiple approximate
models. Scientists and engineers have the ability to model the physical world
at different levels of detail. For example, we can solve problems of motion in
a gravitational field by assuming objects of no size (point masses> moving in a
vacuum. This is an appropriate model for predicting the fall-time of a rock
but not of a feather. Having a detailed model of the domain under
consideration allows one to reason correctly in a wide range of situations,
including previously unanticipated ones. However, this robustness may
entail an excessive computational cost. A diagnostic program that used a
detailed model of the human metabolic system, for example, would be a very
powerful tool but may be prohibitively costly to run. How does one select the
appropriate model? What solution method should be used with each model?
How can a reasoning system recognize that it must use an alternative model,
and how does one shift from one model to another? These issues are
currently being investigated in the context of the electrical power system on
the Hubble Space Telescope (HST). During the past year we have begun to
investigate methods of controlling the expense of model-based reasoning by
generating multiple, approximate models of the task domain, and developing
methods for choosing, from this space of possible models, the simplest model

1 Iwasaki, Y., and Simon, H. A. “Causality in Device Behavior.” AI hurnd, 29:3-32, 1986.

39 E. H. Shortliffe

Progress - Core AI Research 5 P41 RROO785-16

that provides acceptable answers. Our proposed approach to tackling this
problem is to explicitly represent the assumptions underlying each model,
and to use these explicitly represented assumptions to help pick the
appropriate model.
Finally, we must learn to integrate different types of reasoning in physical
domains. For example, case-based reasoning is widely used in several
engineering domains, especially in the design of new artifacts. Designers
search for a previous design that most closely matches the current
requirements, and then make appropriate modifications. However, even
when past cases are used to construct a new solution, model-based reasoning
is needed to make the modifications to fit the current problem, and also to
detect unforeseen effects of those modifications..

(2.21 Adantive Intellipent Svstems
How can we design flexible control structures for powerful problem solving
programs? How can we use these structures effectively in many problem
domains? How can we represent processes and reason about their behavior,
and perform intelligent actions under real-time requirements?
We have continued to develop the BBl blackboard architecture to address
these and related problems. In particular, we have begun or continued work
on the following domain-independent BBl modules:
. The Focus module provides a dynamic focus of attention and protects the

application system from input data overload. It continuously monitors all
sensors, abstracts sensed data (e.g., as value categories, averages, trends,
or patterns), and filters the abstracted data before relaying it to the BBl
application system.

. The ReAct module provides time-sensitive problem detection and response
capabilities. It propagates asynchronously sensed data through a
hierarchically partitioned belief network. It uses time and other resource
constraints to determine whether to continue the analysis or act on the
basis of its current assessment.

l The ICE module provides reasoning from first principles to handle
complex or unfamiliar problems. It uses structure/function representations
of generic physical systems (e.g., flow, diffusion) and particular domain
systems (e.g., respiration, circulation) to diagnose, explain, and predict
problems.

l The TPlan module provides time-sensitive planning of coherent courses of
action. It plans actions forward in time and at successively more detailed
levels of abstraction. It uses time and other resource constraints to
determine whether to continue plan refinement or act on the basis of its
current plan.

. The TDB module provides a temporally organized database of observed,
expected, and intended models of external entities, and associated
temporal reasoning functions.

E. H. Shortliffe 40

5 P41 RR00785-16 Progress - Core AI Research

In collaboration with Dr. Adam Seiver of the Palo Alto VAMC, we have
applied these capabilities in the Guardian system for intensive care
monitoring. Our work on Guardian is reported in section IV of this progress
report.
We have given demonstrations of the Guardian system to many colleagues in
the medical AI and larger AI communities, for example to: Dr. Lawrence
Fagan and his students from Stanford’s Medical Computing Systems Group;
Dr. Seppo Kalli, Director of Medical Signal Processing at Technical Research
Centre of Finland; Dr. William Pardee and his associates from the Rockwell
Science Center; Dr. Perry Thorndyke and his associates from FMC
Corporation; Dr. Joseph Naser of the Electric Power Research Institute.
We have made (or plan to make) invited presentations of this research to:
IEE Workshop on Expert Control Systems, Brighton England, June, 1990;
International Joint Conference on Artificial Intelligence, Detroit, Aug, 1989;
AI Systems in Government Conference, Washington D.C., March, 1989; UAI
Symposium on Knowledge System Development Tools, Stanford, March,
1989; Stanford SIGLunch, February, 1989; Workshop on Formal Aspects of
Semantic Networks, Catalina, February, 1989; Carnegie Symposium on
Architectures for Intelligence, Pittsburgh, May, 1988; Advanced Decision
Systems, Palo Alto, May, 1988; Boeing Computer Services, Bellevue, WA.,
March, 1988; DARPA Knowledge-Based Planning Workshop, Austin,
December, 1987.
The project has produced the following recent publications, including KSL 88-
64, KSL 89-05, KSL 89-06, and:
Hayes-Roth, B., Hewett, M., Washington, R., Hewett, R., and Seiver, A.
Distributing intelligence within a single individual. In L. Gasser and
M.N. Huhns (Eds.) Distributed Artificial Intelligence Volume 2. Morgan
Kaufmann, 1989.
Hewett, R., and Hayes-Roth, R. Representing and reasoning about
physical systems using generic models. In J. Sowa (Ed.) Formal Aspects
of Semantic Networks. Morgan Kaufmann, 1989.
Hayes-Roth, B. Dynamic control planning in adaptive intelligent
systems. Proceedings of the DARPA Knowledge-Based Planning Workshop,
1989.

(2.3) Advanced Architectures
The goals and technical approach of this project, largely supported by DARPA
under the Strategic Computing Program, have been discussed in previous
annual reports. In the 1988 Annual Report we described the various
components of the project in some detail, and reported on the current state of
progress. The discussion here will be limited to reporting progress in the past
year on each of the components. An overview of the entire project has recently
been written (KSL 88-71), and contains a comprehensive bibliography of
publications produced by the project.

41 E. H. Shortliffe

Progress - Core AI Research 5 P41 RROO785-16

SIMPLE/CARE Multiprocessor Simulation System
SIMPLE/CARE is a powerful simulation system which permits empirical
studies of expert system performance on a wide class of multicomputer
architectures, including quantitative measurements of system behavior. It
forms the foundation for our empirical investigations of software
architectures and hardware system architectures for concurrent knowledge-
based systems. SIMPLE is a CAD (Computer Aided Design) system for
hierarchical, multiple level specification of computer architectures and
includes an associated mixed-mode, event-based simulator. CARE is a
parameterized, multiprocessor array emulation specified in SIMPLE’s
specification languages and running on SIMPLE’s simulator. Our simulation
system is in use by several research groups at Stanford, and it has been
ported to several external sites including NASA Ames Research Center. A
videotaped tutorial was held in June, 1988, attended by representatives from
industry and government, which described the CARE/SIMPLE system, as
well as the LAMINA programming interface (see below). The attendees
received instruction in use of the system for making measurements of the
performance of various simulated multiprocessor applications.
Due to rapidly growing interest in the SIMPLE/CARE system, a major effort
is now underway to port it to wider class of hardware platforms. The system
is currently being reimplemented in Common Lisp and the X window system,
with the Sun workstation as the initial target.
During the past year, the research effort associated with SIMPLE/CARE has
largely focussed on investigations of communication protocols (KSL 88-81)
and techniques for monitoring concurrent object-based applications (KSL 89-
15).

LAMINA Programming Interface
LAMINA provides extensions to Lisp for studying expressed concurrency in
functional programmi ng, object oriented, and shared variable models of
concurrent computation. The implementation of the support for all three
computational models is based on the common notion of a stream, a data type
which can be used to express pipelined operations by representing the
promise of a (potentially infinite) sequence of values. LAMINA also provides
system support for the management of software pipelines and dynamic
structure creation, relocation, and reclamation in a multiprocessor, multi-
address-space system. Algorithms and applications written in LAMINA may
be run on the SIMPLE/CARE simulation system in order to study their
execution on alternative multiprocessor architectures.
The development of LAMINA was completed over a year ago and is being
ported to Common Lisp along with the SIMPLE/CARE system. During the
past year, the shared variable model was used as the basis of a shared
memory Lisp package, called QL (KSL 88-85).

E. H. Shortliffe 42

5 P41 RR00785-16 Progress - Core AI Research

CAGE and Poligon Problem Solving Frameworks
CAGE, a framework for building and executing applications as a concurrent
blackboard system, was described in last year’s annual report. Its
development was essentially completed during the past year. The Poligon
problem solving framework, for the development of Blackboard-like
applications on a (simulated) multiprocessor, was also described in the last
annual report. Its development is now essentially complete and
documentation for the system is now available (KSL 88-69 and KSL 89-37).
Reference manuals for both CAGE and Poligon are being updated, and the
software itself is undergoing some minor changes to bring it in line with the
documentation, in preparation for external delivery.

CAGE, Poligon and LAiMINA Comparative Experiments
As described in last year’s report, a series of end-to-end experiments
comparing various concurrent programrm ‘ng systems for knowledge-based
applications was conducted. The goals of these experiments are to:
l Obtain quantitative comparisons of the performance of the programming

systems.
l Gain insights into how different concurrent programming models lead to

different (or similar) application decomposition and organization.
l Force the refinement of the concurrent programming systems so as to

better support application development.
. Gain insights into the ease or difficulty of writing application code in each

of the programming systems.
The common application for these experiments is Elint [KSL 86-691, a real-
time, knowledge-based system for integrating pre-processed, passively
acquired radar emissions from aircraft. The Elint application was
implemented in three different concurrent programming systems: LAMINA,
Poligon and CAGE. During the past year we completed the experiments and
documented the results (KSL 88-33, KSL 88-66, KSL 88-69, and KSL 88-80).

The AIRTRAC Application
AIRTRAC (KSL 86-20) is a knowledge-based signal interpretation and
information fusion system. The system attempts to identify, track, and
predict the future behavior of aircraft. In particular, it attempts to recognize
aircraft which might be engaged in covert activity, for example, smuggling.
The inputs to AIRTRAC are periodic radar tracking system reports, a priori,
filed flight plans for some aircraft, and occasional intelligence reports about
suspected covert activity. AIRTRAC is designed to be sufficiently complex
and realistic to adequately test various ideas about concurrent problem
solving on multiprocessor machine architectures. The AIRTRAC application
involves continuous input data streams, typical of real-time signal
interpretation problems. Such problems often require a level of

43 E. H. Shortliffe

Progress - Core AI Research 5 P41 RROO785-16

computational power two to three orders of magnitude beyond what is
currently available. Moreover, the application uses data-driven, expectation-
driven and model-driven styles of reasoning. These reasoning styles
encompass a wide range of paradigms in artificial intelligence.
AIRTRAC is designed as three separate modules, called Data Association,
Path Association, and Path Interpretation. The Data Association module was
completed two years ago (KSL 87-34), and an initial version of the Path
Association module was completed one year ago (KSL 88-41). The Path
Association Module is about an order of magnitude more complex than any of
our previous applications in terms of both lines of code and complexity of
control, reasoning and data paths. The initial Path Association Module
quantitative performance experiments yielded, at best, only about an order of
magnitude speedup even on large (up to 256 processors) CARE machine
architectures. This speedup was about an order of magnitude less than the
best speedups obtained b earlier application experiments, such as ELINT.
The primary research question that we are investigating using the Path
Association Module is whether there is an inversely proportional relationship
between potential speedup using parallel execution and application
complexity. If this is the case, then for most knowledge-based systems of
interest the speedup via parallel execution is strongly limited. Our results to
date show that for the Path Association Module the speedup limitation of
about one order of magnitude is intrinsic to the application. We believe that
this is primarily due to two characteristics of the application: a) Its complex
control paths require significant synchronization which results in large blocks
of serial execution, and b) its complex reasoning requires a fairly coarse
granularity of decomposition which limits the amount of achievable
parallelism.
Experiments on relaxing the control synchronization did result in improved
speedup. However, in all cases the quality of solution rapidly degraded as a
direct function of the amount of synchronization and was, in general,
unacceptable. Experiments using finer granularity problem decompositions
required increasing the amount of control synchronization, and any speedup
gains due to increased execution parallelism were more than offset by the
increased control serialization.
Our preliminary conclusion is that for relatively simple and well-structured
applications such as ELINT, two (or possibly more) orders of magnitude
speedup via parallel execution is possible. However, for complex and ill-
structured applications such as AIRTRAC Path Association, speedup over a
well-tuned serial program by using parallel execution is probably limited, at
best, to an order of magnitude. Experiments are continuing to verify this
preliminary conclusion.
During the past year we completed the design and started the
implementation of a parallel, dynamic classification problem solving
framework which will be used to implement the AIRTRAC Platform
Interpretation Module. In this framework, a classification application is

E. H. Shortliffe 44

5 P41 RR00785-16 Progress - Core AI Research

realized as a network of sub-classification nodes. Each network node is
implemented as a LAMINA object, and it executes concurrently and
asynchronously. Information flow along the “links” of the network is realized
by message sending. Time-tagged input data is fed into the “leading edge”
nodes of the network, and the resulting information is propagated through
the network to its “trailing edge” nodes. These latter nodes output results to
the user whenever the classification certainty factors of any entity of interest,
for example, a tracked aircraft, meaningfully change.

(2.4) Knowledge Acauisition and Machine Learning
Our research in machine learning has been ramping down, due to the
departure of Professors Buchanan and Rosenbloom. However, they have
continued to supervise students in our laboratory during the past year.

Inductive Rule Learning
During the past year the RL induction program was extended to learn
incrementally, that is from small sets of examples presented in sequence
without benefit of looking at them all together. A front-end program was
written to assist in the definition of RL’s starting knowledge, the so-called
“half-order theory”. Experiments have been started on the efficacy of
combining induction and explanation-based learning. In addition, we
adapted RL to be a design checker in the following sense: when a design
program (or designer) proposes a new design for a device, our ability to
troubleshoot it later can be partly determined by RL’s ability to learn
troubleshooting rules for that design.

Learning by Chunking
During the past year we completed a set of experiments evaluating a
representational restriction on productions that guarantees an absence of
expensive chunks, with encouraging results. We have applied our domain-
independent abstraction mechanism to a set of problems in two domains
(mobile robot and computer configuration), and evaluated its ability to reduce
problem solving time, reduce learning time, and increase the generality of the
rules learned. We have run a set of experiments which evaluate the ability of
rules learned in medical diagnosis to transfer to related problems (done in a
reduced-size version of NEOMYCIN-SOAR). In the area of theoretical
developments and system building, we have extended our work on declarative
learning to allow indexing off of arbitrary features, but in the process
uncovered a new issue concerned with how to deal with multiple retrieval and
discrimination.

12.5) Svmbolic Simulation
During the past year we completed the implementation of a hypothesis
formation system for molecular genetics. The program, called HYPGENE,
generates hypotheses to account for errors in the predicted outcomes of
experiments computed by the simulation system GENSIM. HYPGENE views

45 E. H. Shortliffe

Progress - Core AI Research 5 P41 RROO785-16

hypothesis formation as a design problem. It employs design operators to
reason backwards from prediction errors to alter the description of the initial
conditions of the experiment to ensure that the predicted outcome of the
experiment matches its observed outcome. HYPGENE generates a correct set
of alternative hypotheses for two different problems encountered by biologists
exploring a new mechanism of gene regulation. This research is documented
in a Ph.D. dissertation, entitled “Hypothesis Formation and Qualitative
Reasoning in Molecular Biology,” by Peter Rat-p (1989).

E. H. Shortliffe 46

5 P41 RR00785-16 Progress - Core System R&D

III.A.2.4. Core System Research and Development

(1) Introduction and Overview
In this section we describe progress on our core system development and
work toward a distributed AIM community. As part of our charter as a
national resource, we are focusing our systems activities on producing a
distributed medical research environment that is both effective for our AI-
related work and can be easily reproduced at other sites. In this process, we
have chosen a small number of standardized hardware and software
configurations to develop and support and have tried to direct our efforts at
technical areas complementary to related systems activities at other sites -
we are committed to importing rather than reinventing software where
possible. We continue to serve as a repository of systems information and
expertise for the medical AI research community, as well as the larger
computer science community. We have assisted many AIM groups in
establishing local computing resources and in getting access to software
available in our community (for more details, see the section on
Dissemination).
One of the principal thrusts of our core systems work has been to find a
technically- and cost-effective replacement for the powerful and easy-to-use
computing tools of the aging DEC 2060. Our criteria for the new
environment have included:
l The work environment should be modern and combine graphics, pointing,

and traditional keyboard modalities of interaction, as it is expected to be
the primary work environment for some years to come.

l The system should support the most powerful AI research and Lisp
development environment available today, possibly involving special-
purpose hardware.

. The system should support small-to-medium-size AI and Lisp-based
research work without requiring special hardware.

. The cost per person should be low enough as to permit putting a machine
on or near every desk and to consider the system as a potential AI delivery
environment.

l The system should integrate well into a heterogeneous computing
environment typical of AIM research work.

l The system should be capable of editing, organizing, and printing large
documents, such as theses and books.

. The system should be capable of generating and editing state-of the art
graphics.

. The heavily-used network services provided by the 2060 (e.g., wide- and
local-area network access, electronic mail transmission/routing, reception,
and user access, community bboards, file service, and print spooling) must
be replaced.

47 E. H. Shortliffe

Progress - Core System R&D 5 P41 RROO785-16

l The design should be incrementally extendable and augmentable as new
hardware and software technologies appear and as the number of users
fluctuates.

. The design should be cost-effective enough as to be replicable at smaller
AIM sites that wish to benefit from our experience.

l The design should permit easy data sharing and exchange with
collaborators at other sites and within Stanford University.

As detailed in our report last year, we have chosen Apple Macintosh II
workstations as the general computing environment for researchers and staff,
TI Explorer Lisp machines (including the microExplorer Macintosh
coprocessor) as the near-term high-performance Lisp research environment,
and a SUN-4 as the central network server replacement for the DEC 2060.
We outlined there the myriad of tasks facing us in making the transition from
the central 2060 environment to the new distributed model, including
selecting and integrating tools for text processing (editing, graphics,
formatting, and bibliographic references), presentation graphics, printing,
help facilities and distributed information access, interpersonal
communication tools (EMail and BBoards), file management (storage, access,
backup, and archiving), and system building tools (languages, development
environments, and integration tools).
However, rather than the carefully orchestrated transition plan we had
proposed and received approval fi-om Council to implement (see last year’s
report for a summary), we were obliged to undertake a much more
precipitous transition because of the severe funding constraints resulting
from an 11% cut in our NIWDRR grant award last year. There were two
immediate consequences of this large budget cut: a) reducing our systems
stafY by two people (one layoff and one through attrition) and b) taking the
DEC 2060 off of contract maintenance early in the grant year, thereby forcing
us to close it down for routine use. These steps have had other impacts in
slowing our work toward the long-term research goals we set out to achieve,
both in forcing us to devote full energy to the 2060-to-SUN-4 transition
approximately a year before we expected to be ready for it and in reducing the
level of effort of the remaining staff for work on these difficult problems.
Because of the necessary preoccupation of most of our staff with this
premature transition this past year, we were not able to convene the visiting
advisory group as was recommended by BRTP to help guide our long-term
research efforts. As we finally close out the 2060 chapter this summer, we
will plan to assemble such a group in the early fall (September or October) to
reassess our plans for the coming two years. In spite of all this unplanned
redirection of our energies, we have made substantial progress this past year
as summarized in the following sections.

E. H. Shortliffe 48

5 P41 RROO785-16 Progress - Core System R&D

(2) The Phase-Out of the DECSystem-20
The contract maintenance cost of the DEC 2060 was about $70,000 per year
and we could not afford to continue this coverage in light of the large budget
cut. Since this old-technology machine would become unreliable without
regular maintenance, this forced us to transfer nearly all of our AIM
community usage to the SUN-4/280 in October and November of 1988. The
DECSystem-20 had been our major computer resource since February of
1983. As this machine, in turn, had replaced a DEC KI-TENEX system in
use for nine years, our conversion to the UNIX based SUN-4/280 represented
a major departure from a long-held approach to computing.
While some of our users already had experience with the UNIX operating
system and hence had an easy time of adapting to our SUN-4 system, most
others had a long history of using only the TOPS-20 operating system or its
predecessor, TENEX. For these users, converting to the use of UNIX was a
major obstacle. The more mnemonic command syntax of TOPS-20, together
with the various command completion and ever-ready “help” features are not
available in the basic UNIX system. Even the popular “man” feature for the
on-line reading of UNIX manual pages provides little in the way of tutorial
guidance.
A significant and urgent effort went into developing a UNIX Users Guide for
TOPS-20 Users which has provided substantial help in navigating through
the most common of commands. But, it is clear that despite its overwhelming
popularity, the UNIX system fails to provide many of the user-friendly
features available for many years in the TENEX and TOPS-20 environments.
The mechanics of transferring about 400 user accounts was a major but
relatively straightforward task. We were fortunate in having available a
program from Rand Corp. (via Rutgers University) which provides for the
reading TOPS-20 Dumper tapes under UNIX. Most of the immediately-
needed working files from the 2060 system were dumped to tape and loaded
into the SUN-4 using this program. In addition, the Ethernet system
connecting the two machines facilitated the task of transferring files and
ensuring on-going access to the files remaining on the 2060. Most of this
transfer was done during a four week period of intensive work.
As complicated as the transfer of the users’ files was the handling of
transferring the “SUMEX-AIM” name from the 2060 to the SUN-4 (including
coordinating updates to all of the domain servers and host tables around the
Internet), mail distribution issues, and providing continuation of BBoard
facilities. Another month of planning and implementing these aspects of the
transition were required, including a number of false starts because of
problems in the ARPANET Network Information Center in timing the
Internet name and address changes. Continuous and nearly compatible AIM
community mail services were maintained through the transition by
installing the Columbia University MM-C mail program on the SUN-4. This
program closely duplicates the functions of the TOPS-20 COMAND JSYS

49 E. H. Shortliffe

Progress - Core System R&D 5 P41 RROO785-16

under UNIX and presents the user with a mail reader/composer interface
very similar to that of TOPS-20 MM - the system that had been used by the
AIM community for 10 years. At the time of our SUN-4 transition, MM-C
was still in its early stages of being released and required intensive work to
track down numerous bugs which were uncovered by the heavy use in our
community. Nevertheless, this system, coupled with a UNIX version of the
EMACS text editor, called GNUEMACS, provided a familiar setting for the
most common computing functions used by AIM community members.
Once this program was in place, the 2060 mail files were passed through a
preprocessor to make them UNIX-compatible. Next, we forwarded all mail
directed to the old SUMEX-AIM (the 2060) to the SUN-4 (the new SUMEX-
AIM). This allowed mail to be accessed during the transition. Once the
transition was completed, we changed the name of the 2060 to be SUMEX-
2060, and renamed the SUN-4 SUMEX-AIM. From this point onward the
2060 was no longer used for mail access. In the succeeding months, we added
bulletin board functionality to MM-C so that, from the user’s perspective,
mail access was nearly identical to the former system.
Part of our original plan for conversion from the DECSystem-20 to the SUN-4
included moving the 2060 ARPANET interface to the SUN-4. This plan was
initiated in the fall of 1988 but, before SUN Microsystems could deliver the
required hardware/software interface package (and BBN could provide a
replacement IMP interface) major changes in ARPANET service were being
implemented. As a result, the ARPANET connection for the SUN-4 was
cancelled and our Internet access is now implemented through the Bay Area
Regional Research Network (BARRNet) and the NSFNet (See Wide Area
Network Developments).
Another major issue in the 2060-to-SUN-4 transition has been the need to
provide our users with continued access to the their large collection of
archived files and to a set of permanent annual backup dumps (done January
of each year) which have been collected and maintained since 1975. Early
tapes are in the BSYS Archive format or TENEX Dumper format. Later ones
are either TOPS-20 Archive format or TOPS-20 Dumper format.
This has required very careful planning as the directory information for these
tapes resides in Archive directory files (for TENEX) and the on-line File
Descriptor Blocks (FDB’s) of the TOPS-20 file system. These two sets of
information must be converted to simple UNIX-compatible text files to
provide users with continued facilities to review and access their collections of
archived files. This work has been a major undertaking and is still in
progress. (See the Section on File Access, Back-up, and Archiving for more on
this topic).
Our past commitment to the use of Ethernet TIPS for the connection of users
to hosts proved its value in the system changes described above. Little
concern had to be given to moving collections of terminal “hard-lines” from
one piece of equipment to the other. Likewise, with dial-in modems attached
to TIPS, users could easily select the new system when establishing

E. H. Shortliffe 50

